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EXPERIMENTS IN SCENE ANALYSIS

Richard O. Duda
Peter E. Hart

Stanford Research Inst i tute
Menlo Park , Cali fornia 94025

Abstract

This paper describes an experimental computer program that analyzes

pictures taken in a simple , but nevertheless real-world , robot environment.

The analysis proceeds by building up, step by step, a partial line drawing

representation of a digitized television picture. An interesting feature

of the system is an executive program that uses detailed knowledge of the

environment to control other programs that extract the part ial line drawing.

Examples are given to illustrate the operation of this experimental program.

This research was sponsored by the Advanced Research Projects Agency of
the Department of Defense and was monitored by the National Aeronautics
and Space Administration under Contract NAS12-222l.



EXPERIMENTS IN SCENE ANALYSIS

Richard O. Duda
Peter E. Hart

Stanford Research Institute
Menlo Park , California 94025

INTRODUCT ION

During the past several years the field of artificial intelligence

has become increasingly involved in the problem of designing intelligent

robots. While this is not the place to resurrect old questions about the
definition of intelligence , an obvious prerequisite for interesting be-

havior in such a machine is the ability to obtain information about itself

and its environment. We can imagine a number of ways in which this might

be achieved. Perhaps the simplest is direct feedback about the geometrical

configura t ion of the machine--kinesthet ic feedback , one might say, to pro-

vide the machine with information about itself. Primitive information
about the external environment of the machine can be obtained with simple

touch or force sensors. Distance information about ob,jects not within reach

can be obtained through the use of some form of range finder. Finally, we
can imagine sensors implementing the human senses of smell , hearing, or

sight. Of all these possibilities (not to mention others for which there
are no human counterparts), the richness and potential utility of the visual

field has excited by far the most interest and attention. In this paper we

will describe some experimental work aimed at developing processing tech-

This research was sponsored by the Advanced Research Projects Agency of
the Department of Defense and was monitored by the National Aeronautics
and Space Administration under Contract NAS12-222l.
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niques for extracting information from visual data.

The difficulty of the problem we are addressing is attested to by

the paucity of published results. While the literature on classical

pa ttern recognition is vast there have been very few significant con-

tributions to what we shall call scene analysis --the problem of describing

the content s of a picture of a three-dimensional scene. The classic paper

in the field is by Roberts (1965). His approach to the problem of describ-

ing pictures of simple geometrical solids is characterized by two distinct

steps of processing. The first step attempts , through a series of opera-

tions , to reduce a digitized televis.ion picture to a perfect line drawing.

The second step matches the line drawing, either in whole or in part, against

a set of stored computer models of geometrical objects. The model achieving

the highest degree of match with a given portion of the picture is taken as

a description of that portion. Moreover , the spatial orientation of the

model achieving the best match gives additional information about the posi-

tion of the object with respect to the camera. A second important contribu-

tion was made by Guzman (1968). His work assumes the existence of a perfect

line drawing of jumbles of geometrical objects. Each geometrical object is

assumed to be solid (no thin sheets), hole-free , and bounded by planes, but

is otherwise unspecified. From these assumpt ions , Guzman s methods are able

to partition the picture into sets of regions such that each region in a set

belongs to the same geometr ical obj ect. In other words , Guzman largely solved
under his assumptions , the problem of piecing together the visible parts of

See , for example , Nagy (1968).
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part ially occluded obj ect s.

If we put together the methods of Roberts and Guzman , we might arrive

at the following paradigm for completely processing television scenes of

jumbles of geometrical obj ects: make a perfect line drawing, apply Guzman

techniques to associate regions of the pictures with specific object s then

use Roberts model-matching methods identify each obj ect . Although super..

ficially reasonable , to our knowledge this paradigm has been successfully

implemented only in very simple situations. The basic problem is that the

pictures themselves contain perfect information only if the environment is

severely restricted. In general , for a given transducer--that is, a given

visual pickup device and analog-to-digital converter--we might distinguish

three different types of environments. In very s imple environments the

transducer can provide "perfect " visual informa tion. In very complicated

environments the transducer is hopelessly inadequate. Somewhere between

thl se extremes are visual environments for . which the transducer can provide

information that is "adequate " but by no means perfect. Our research in-

terest lies in this middle ground. For this class of environments , a scene

analyzer will not be able to proceed in a purely hierarchical way. Instead

it will be forced to reconcile various pieces of evidence in the picture

against each other and against prior information about the environment.

In this paper we will describe a scene analysis program that proceeds

in this spirit. It consists of, two components. The baseboard trackin pro-

gram tries to delineate the boundary of the room by locating a baseboard at

--.---..---

For an example of scene analysis in a clean environment see Pingle and
Wichman (1968). Forsen (1968) illustrates some of the difficulties that
arise in more complicated environments 
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the bottom of the walls. The object recognition program attempts to locate
and , if possible , identify simple geometrical objects situated in a labora-

tory room. The immediate motivation for both programs is the Stanford Re-

search Institute mobile automaton. The automaton , described in more detail

by Nilsson (1969) and Munson (1969), is a mobile , computer-controlled vehicle

equipped with touch sensors , an optical range-finder , and a standard vidicon

camera. The camera and associated analog-to-digital converter produce a dig-

ital picture quantized in space to 120 x 120 picture cells and in int ensi ty

to 16 grey levels (see Fig. 2 (b) and 7 (b) J . Digital pictures such as these

are the raw data for the programs described in the following sections.

BASEBOARD TRACKING AND FITTING

The first part of the scene analysis program is the baseboard tracker

and fitter. The function of this rather special-purpose program is to iden-

tify the baseboard in the picture and project it back into the room , thereby

providing information about the position of the robot with respect to the

walls. The program has two basic parts: a baseboard-identification routine
and a line-fitting routine. We discuss each of them in turn.

Baseboard Tracking

The baseboard identification routine capitalizes on the fact that

the baseboard in our room is dark , and that it has a known width. Accord-

ingly, the routine scans the original grey-scale picture , column by column

looking for dark sect ions. Likely candidate sect ions are scored according

to darkness and deviation from ideal width. The ideal width of a section is
determined by computing the image width of the actual baseboard. The output

of the tracking routine is a list of picture points , no more than one per
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column , that are likely to be tho lower edge of the baseboard. Conceptually,

it is convenient to think of this data as being a new binary picture (that

, a picture having only two levels of intensity, black and white) showing

the image of the lower edge of the baseboard. Typically, this binary pic-

ture will show several irregular 1 ine-l ike segment s. Long sect ions of base-

board will usually have some gaps in them , either because of occluding

objects or because the tracking routine failed to identify visible baseboard.

Conversely, there will often be false hi ts--short segments alleged to be

baseboard that in fact are not. In any event , imperfect or not , these irreg-

ular segments constitute the input to the line-fitting routine.

Line Fitting

The line-fitting routine has built into it several kinds of infor-

mation about the environment. It uses this information to constrain , or

limit , the set of candidate'lines that it might consider. The simplest

information it has is that the data must be fit with either one or two

straight lines. (The camera may be aimed toward a corner of the room , but

the lens angle is not wide enough to see two corners , and hence three sides

of the room. The second piece of information utilized by the routine is

that the walls of the room meet at right angles. Finally, the routine has
a rudimentary, but for it s purpose adequate , concept of not being able to

see through walls. The program uses these forms of information to control

the application of a less-informed line-fitting operation whose details will

be described in the next sect on.

The first step in the process is an approximate fit to the single

longest segment produced by the tracker. This rough fit is then perturbed
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systematically over a small region of the picture in order to find the

line that captures the greatest total number of segment points. Next

the routine examines each segment in the picture and computes a score

measuring how well the segment is "explained" by the fitted line. The

closer and more nearly parallel a segment is to the line , the higher

the score. If all the segments are sufficiently well explained , the
routine computes the position of the line on the floor (using the floor-

location operation described in the next section) and returns the final

answer.

If all the segments are not well explained , and are not so short

tha t they can be ignored a s noise , the rout ine tr ies to find a second

wall. To do this, it appeals to some relations from projective geometry
that sharply constrain the location of the second line. In particular,

it uses the fact that the images of two perpendicular baseboards must

pass through conjugate vanishing points. A vanishing point for a line

in the floor is the point at which its image intersects the horizon line

of the picture. The important property of conjugate vanishing points is

that , given either one of them , the other may be easily computed (appro-

priate equations are given in Hart and Duda (1969)J. Thus , if we have

fitted a line to one baseboard , and if the fitted line has a vanishing

point x
l' then the vanishing point x2 of the image of the perpendicular

baseboard is completely determined. This conjugate vanishing point is

used in two ways. First, by constra ining the fit of the second 1 ine to

pass through the conjugate vanishing point we are assured that the two

fitted lines will project back onto the floor at right angles. Second
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we can use the conjugate vanishing point in conjunction with the segments

already explained by the first line to limit the region of interest 

This limitation is illustrated in Fig. 1. The second line must fall in
the shaded region , since a line in any other part of the picture would

correspond to a wall that either (1) hid the first wall (2)' was hidden

by the first wall , or (3) was floating in air above the horizon. The

importance of the constraint on the region in which the second 1 ine must

fall is primarily concerned with eliminating spurious segments. The

forbidden region of the picture often contains spurious line segments

produced by the tracking routine. By removing those segments from con-

sideration , the tracker makes far fewer errors than it would otherwise

commi t .

III OBJECT RECOGNITION
The purpose of the object-recognition program is to identify objects

in the picture and to locate the position of each object in the room.

The only objects the program "knows " about are rectangular parallelepipeds

triangular wedges, and doorways. Any obj ect in the picture may be occluded

ei ther because it is part ially off-camera or because another obj ect is in

front of it. The program , however , attempts to identify only unoccluded 

objects. Occluded objects , if found , are merely labeled as "objects.

The experimental setting is a laboratory room that will be described in

more deta il below.

The object-recognition program operates on two levels. The lower

level consists of a number of routines that perform various tests on
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specified regions of the picture. The upper level is an executive scene

analyzer. Its function is to explore the scene by applying tests in the

repertoire of low-level routines. When a given test is completed , the

executive evaluates the answer in light of both previous test results and

its own internal knowledge of the constraints of the environment. It

then decides what test should be performed next and where in the picture

the test should be applied. This process is continued until the executive

amasses enough evidence from test results to make a decision. The strat-

egy the executive uses in exploring a scene is to form a hypothesis about

the picture and then call a test that will tend to confirm and sharpen

the hypothesis. Ini t ially the hypotheses will be very vague , such as

There is part of an object at picture point (i

j).

As the analysis

proceeds , the hypotheses become sharper until an object is identified

and located in the room. If a given test tends to weaken a hypothesis

then an alternative hypothesis is selected and the analysis continues

along this track.

The Execut i ve Program

The executive program described has been implemented as a

decision tree. Each node in the decision tree corresponds to a partial

hypothesis about the scene. Concomitantly, each node also corresponds
to a fixed low-level test that will tend to sharpen that hypothesis.

The branches out of a node correspond to the possible answers that the

given test can return. Accordingly, exploring a scene is accomplished

by traversing a path through the tree.

One of the problems of a conventional decision-tree program

is that a wrong decision at any point usually result s in an incorrect
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final answer. If we are to overcome this problem , we need a mechanism
that enables us to regard each decision as being only tenta t i ve. 
this end , each low-level test associates a numerical measure of confi-

dence with each of its answers. Thus , since branches correspond to test

answers , each branch out of a node possesses a confidence value. At any

stage in the scene analysis , various paths of the tree will have been

tra versed to var ious depths. Each part ial path corresponds to a hypoth-

esis , and a confidence for each partial path is computed from the con-

fidences of the branches along that path. After each test is performed
the confidences for the various hypotheses are updated , and further ex-

plora tion of . the tree proceeds from the most confident hypothesis. 

this way if a wrong decision is made and subsequent tests yield results

of low confidence , we have a mechanism for backing up and exploring

al ternat ive hypotheses.

When a pa th in the tree terminates and an obj ect is recognized

(or a failure announced), the region of the picture in the vicinity of

the object is removed from consideration and a new analysis is begun on

the remainder of the picture. This process is repeated until no more

objects can be found. An intuitive understanding of the object-recog-

nition program is most easily gained through examples illustrating its
operation on typical scenes. Before giving examples , however , we must
first describe the repertoire of low-level operators.

* For a discussion of some theoretical questions concerning decision-
making in tree structures , see Hart (1969).
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Low-Level Operators

Each of the low-level tests is performed upon a so-called

gradient picture. The gradient picture is extracted from the original

digitized picture by an operation that tends to enhance edges , or dis-

continuities , in grey level We have used the operator described by

Forsen (1968). Specifically, the point (i j) in the digital picture

is replaced by II , - 1 1 + 11 ' - I 1, where I , is theJ.J J. J J. J J. J.J

grey level of the digital picture at the (i, th cell. A 
line in the

gradient picture thus corresponds to an edge in the original picture.

Examples of thresholded gradient pictures are shown in Figs. 2 (c) and

(c). In each case the gradient has been computed and a point displayed
if the value of the gradient was greater than or equal to two.

Most of the low-level operators are based on a simple procedure

known as template matching or masking. A masking operation basically

consists of computing the average gradient between two specified picture

points in order to determine the likelihood of a straight line existing

between the two points. A low-level operator may return either one

answer or several , depending upon the opera tor and the scene. Every

answer has associated wi th it a number between a and 100 that indicates

the confidence of the answer or , more precisely, the strength of the

response. The following is a list of short descriptions of each operation

available to the executive-level program:
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(1) Line Connection. This routine does a limited local

search in order to find the best line between two spec-

ified endpoints. It places masks between all pairs of
points generated by small perturbations of the specified

points and returns the endpoints associated with the

strongest response.

(2) Spurs Spurs are short segments of lines radiating away

from the endpoint of a specified line. The spur finder

returns a list of such spurs and their conf idences. It

operates by computing mask responses for a set of 52 short

masks arranged like spokes on a wheel. The table of mask

responses as a function of angle is searched for local

maxima , using hysteresis smoothing to avoid small irregu-

larities without losing angular resolution. The spur

corresponding to the maximum nearest to the specified line

is rejected as probably being the line itself , and the

routine returns those remaining spurs whose confidence ex-

ceeds some threshold.

(3) Directed Spurs. This routine returns that spur at the end

of a specified line that comes closest to running in 

specified direction. The cosine of the angular error is

used to measure confidence.

(4) Verticals. This operator finds vertical lines by placing
masks in a generally vert ical direct ion. The opera tor
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employs a relation derived from projective geometry 

compute the so-called vertical vanishing pOint--the point

in the picture plane through which all images of vertical

ines must pa ss. All the masks , when extended , run through
this vanishing point. When a mask gives a strong response

a more detailed examination takes place. Typically, the

vertical line (or lines) found will contain gaps because

of noise. If a decision to bridge a gap is made solely on

the basis of length , an unacceptably high number of errors

resul ts. Accordingly, the vicinity of a gap is examined

for the presence of baseboard or spurs. A spur signifies

that the gap is "real. " A gap in the vicinity of a base-

board is usually caused by the lack of contrast between

the dark baseboard and the obj ect , and is therefore bridged.

The use of this type of more "global" information , augmented

by the purely "local " information about gap size , results

in a far more reliable vertical line finder. Increased

reliability, in turn , allows us to use vertical lines as the

keystone of the decision-tree scene analyzer.

(5) FOllowing. This routine starts from a specified point and

follows the gradient along a specified direction as long

as the trace is sufficient ly straight. Al though this

See Ahuja and Coons (1968) or Hart and Duda (1969).
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operation is not too reliable , particularly regarding

the determination of the proper endpoint , it usually

provides a better determination of the angLe between

a given line and one of its spurs than can be obtained

by the spur finder.

(6) Baseboard. This routine tests whether endpoints of

vertical lines occur in the vicinity of the baseboard.

It is the only means by which information obtained by

the baseboard tracker is passed to the object-recogni-

tion program.

(7) Picture Point. This simple routine merely measures the

distance between a specified point and the boundary of

the picture. It is usually used to warn the executive

that a line of interest may be running off the picture

and out of view.

(8) Floor Location. The final step in the analysis of a

scene is often to locate the position of an object in

the room. More precisely, given a point in the picture

known to be on an object (a vertex of a cube , for ex-

ample), we want to locate in space the corresponding

actual point. To do this we make use of the fact that

the process of taking a picture can be modelled as a

collection of rays of light that pass through the camera

lens and strike an image plane. Given a point on the

image plane , we can follow the ray out through the lens
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and on into space. In general , or course , we cannot

determine where on this ray the corresponding actual

point lies. Suppose , however , that we know at least

one additional piece of information about the actual

point. In particular , suppose we know that the actual

point lies on the floor plane. Then we can compute
where the ray of light intersects the floor and thus

locate the position of an object with respect to the

camera. In pract ice , then , when the image of an ob-

ject is identified by the scene analyzer , the analyzer

selects some points on the object known to be on the

floor (the lower endpoints of vertical lines , for
example) and passes these image points to the floor-

location routine. The floor-location routine performs

the necessary trigonometric calculations to locate the

actual point.

EXAMPLES

In this section we will illustrate the operation of the scene-

analysis programs on two different television pictures. We remind the

reader that the purpose of the programs is to extract certain types of

information from the picture , not to convert the original picture into

a perfect or complete line drawing.

The details of the calculations are given in Hart and Duda (1969). The
idea of using a point on the floor to establish location was called the
support assumption by Roberts (1965).
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The first scene to be processed is shown on the television mon-

itor in Fig. 2(a). The digitized picture is shown in Fig. 2(b), where
we have displayed the brightness in each picture cell as one of 16 levels

of intensity. Figure 2 (c) shows the gradient picture derived from the

digit ized pictur ; a point in this picture is displayed if the gradient

at that point has a magnitude of at least two. Note that the wedge is
partially out of the field of view , and that lack of contrast caused the

back edge to be almost completely missed.

The scene analysis begins with the baseboard tracking procedure.

Figure 3 (a) shows the points in the picture selected by the tracking

procedure as lying on the lower edge of the baseboard. Once the track

is obtained , the line-fitting routine begins operation. Its first step

is to fit , approximately, each segment of baseboard track by a straight
line , as shown in Fig. 3 (b). The longest of these segment s is extended
to the boundaries of the picture. In our example , this long line fails

t'o "expla' " two of the segment s , so the vanishing point of the ine is

computed and the conjugate vanishing point found. The remaining segments

are fitted as well as possible by a second long line constrained to

pass through the conjugate vanishing point. The two long lines so deter-
mined , together with the track itself , are shown in Fig. 3(c). The final

step is to project the fitted lines back onto the floor in order to de-

termine the position of t4e walls. In general , of course , the final long

line fits will differ from the initial rough segment fits. To illustrate
this difference , Figs. 3 (d) and 3 (e) show two plan views of the robot t s

world. In each case the robot' s position is at the midpoint of the bottom

of the map. The cone of vision of the robot is delineated by the two lines
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extending approximately northeast and northwest from the robot' s position.

In Fig. 3(d) we have shown the projected positions of the short segments

whereas in Fig. 3(e) we have superimposed the two long lines on the short

segments. The two long lines meet at right angles , while the short seg-

ments do not. The projections of the long lines back onto the floor are

accepted as the wall locations.

At this point the object-recognition program is called. Its first

step is to find all the vertical lines in the picture. Figure 4(a) shows
the first strong mask response encountered. As often occurs , there are

breaks in the line. Three things can happen in such a case: a gap can be

ei ther bridged or not bridged , or a line segment can be deleted. 

shown in Fig. 4(b), the bottom segment was deleted because it was very

short hile the upper two segments were joined since no spurs were present

to indicate a "true" endpoint and the gap itself was not very large. Fig.

4 (b) also shows the mask response of the second vertical. In this case
the gap was bridged , because the presence of the ' seboard nearby indicated

that the gap was probably the result of lack of contrast. Figure 4(c)

shows the final result of the vertical line-finding operation. It consti-

tutes the initial data for the decision-tree analyzer. The corresponding

vague hypothesis is merely that there is at least one object in the picture

and the vertical lines are associated with the object(s).

The first step in the decision tree is to examine the lower end-

point of the right-most vertical to find possible spurs. A confi ming spur

was in fact found , and an attempt was made to connect the lower endpoint to

the lower endpoint of any other vertical. This failed , so as a last resort

the spur was followed , as shown in Fig. 5 (a). Spurs at this endpoint were
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also found and followed , as shown in Figs. 5(b) and 5(c). The success

of each of these tests added evidence that an object indeed existed in

this area of the picture , and the angle of the final line indicated that

the object was a wedge. At this point attention shifted to the other

vertical. Neither the upper nor the lower endpoint gave any evidence of
a spur , reducing the likelihood that the vertical line was "real. More-

over , when the lower endpoint was proj ected back onto the floor plane 

fell behind the wall. For these reasons the program could not explain the

line , and dismissed it as noise. Actually, the line was real--it was

caused by light reflecting from a chrome strip that carpenters had used

to cover a wall seam. Nevertheless, the scene analysis does extract

most of the important information from the picture , as shown in the floor

plan view of Fig. 6. The walls are correctly located , and the wedge
correctly identified. The position of the wedge is found by projecting

back the lower boundary C see Fig. 5 (c) J, and is accurate to wi thin the

resolution of the hardware. Thus , we would consider this particular anal-

ysis to be a successful one.

Our second scene is shown in the monitor view of Fig. 7(a). This

scene is more complicated , involving two objects , both partially off

camera , and a partially occluded open door. The digitized picture and

gradient picture are shown in Fig. 7(b) and 7(c). The baseboard was

found in a correct if unexcitingly routine fashion and we will say no more

about that phase of the analysis. The first vert ical ma sk response en-

countered is shown in Fig. 8(a). The lower short segments were eliminated
because of length , and the single vertical line of Fig. 8(b) was accepted. 

In a similar fashion , all other verticals were found correctly, as shown

in Fig. 8(c) and constituted the initial data for the decision tree. The
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leftmost vert ical line , shown in Fig. 9 (a), was inspected for spurs at

the lower endpoint as usual. A spur was found , and the search for a

connection to a lower endpoint of another vertical resulted in the rel-

at i vely poor fit and part ial hypothesis shown in Fig. 9 (b) . The upper

endpoints of both of these verticals are off the picture , and lower

endpoints each yielded further spurs. For scenes without occlusion
this configuration is illegal; thus, attention shifted to the next

vertical (Fig. 9(c)J. The same sequence of a partial hypotheses and
tests resulted in the connection shown in Fig. 9(d). In this case
however , the upper endpoints were both on the picture , and a spur , when

followed , connected them (Fig. 9(e)J. In particular , the followed spur

did not form a triangle , providing further evidence that both verticals

were "true. The left vertical yielded two more spurs , which , when

followed , ran off the picture with no indication of a triangular face

(Fig. 9(f)J. Thus , the object in question was accepted as a box (rec-

tangular parallelepiped), rather than a wedge , even though the box was

not completely within the picture. Moreover , the approximate location of

the box was found from the lower boundary. At this point , attention cen-

tered on the next unexplored vertical. Coincidentally, this situation was

the mirror image of the one just finished , and the same path through the

decision tree was followed with the same results (Fig. 9 (g) J. The final

resul t of the analysis is shown in the floor-plan view of Fig. 10. The

wall location is shown , and the two boxes are located conservatively--the

unknown parts of their boundaries are not shown. The open doorway, which

corresponded to the partial analysis of Fig. 9 (b), was not found. Since

the program was not designed to handle occlusion , this is about the best

that could be expected. As an aside , we believe that it would not be
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difficult to modify the program to handle such simple occlusions. Thus

although this analysis was not entirely successful , most of the impor-

tant information in the picture was extracted.

The types of successes and failures that the scene analyzer ex;'

hibits in these examples are typical of its operation on most pictures

taken in our environment. While the diversity of possible pictures

makes it difficult to generalize , it seems fair to say that the analyzer

will perform perfectly on only very simple scenes, but that it will

extract some correct information from all but quite complicated scenes.

Some failures can be fixed by incorporating in the analyzer an ever-

increasing amount of knowledge about the world--for example , information

about chrome strips, wall outlets , and so forth. Many other kinds of

failures , however , can be fixed only by using more global information to

direct each step of the processing.

CONCLUSIONS

The research reported in this paper is part of a continuing

effort. The next -generation scene analyzer tha t we construct will very

likely combine some of the ideas reported here with the approach described

by our co-workers Brice and Fennema (1969). In our opinion , the most

noteworthy aspect of the present work is tha t it has resulted in the

realization of a scene analyzer that evaluates evidence from a picture

in the 1 ight of both other evidence and prior information about the en-

vironment. To illustrate the distinction between the approach reported

here and previous work (including some of our own), suppose the object-

recognition program attempted to find all the straight lines in the pic-

ture by means of an algorithm that knew only about straight lines. The
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danger is not merely that such an approach is likely to be inefficient

but that the algorithm is likely to find many spurious lines and fail

to find many valid ones. Sorting out the wheat from the chaff may be

(and for our environment , in fact , was), a hopeless task. By way of

contrast , the object-recognition program described here applies only

an initial vertical line-finding routine in an "uninformed " way--that

, without any checking of whether the results it obtains make sense.

This operation is performed merely because the algorithm must start

somewhere , and vert ical 1 ines are generally found reliably. All other

operations proceed in small steps , and at each step there is a check

of the result of a given test with previous results. This procedure

was continued not until a perfect line drawing line was obtained , but

only until enough evidence was gathered to make a reasonably confident

decision. Note that in the examples the analyzer did' not complete any

drawings. We bel ieve that perfect 1 ine drawings should be constructed

after , not before , the scene has been analyzed.

One interesting comment about our approach is that we have not

yet been able to draw any firm conclusions about the use of confidence

measures to control the tree search. The idea remains an appealing one

but in most of our experiments any failure of the object-recognition

program was sufficiently catastrophic to make error-recovery through

backup unlikely. It may be that the tree is not sufficiently elabo-

rated--that not enough tests are performed to check the results of

previous tests. The resolution of the question will have to await

further experiments.

Another comment about the object-recognition program is that

- 20 -



much of its effort is devoted to identifying parts of objects in the

scene. In other words , it is devoted to solving the so-called figure-

ground problem. The baseboard-tracking program solves this problem in

a trivial way--the baseboard is almost always darker than its immediate

background. In more complicated situations we are in the uncomfortable

position of not being able to extract the figure from the background

unless we can first recognize the figure. The situation is complicated

even more by the fact that any object might be partially out of the field

of view. Thus , the difficulty for the object-analysis program is not so

much a function of the number of object types (within reasonable bounds),

as is it a function of the background or general environment. If the

only allowable objects were boxes , but the environment remained as it is

we anticipate that the object-recognition program would not be very much

more reI iable than it is now.

The baseboard program provides an interesting contrast to the

object-recognition program. The single most important simplification

is undoubtedly the fact that the baseboard can be easily extracted from

the background by virtue of its dark color. A second simplifying factor

is its linearity--each column of the digital picture is traversed by at

most a single baseboard. These simplifying considerati.ons, together with

the fact that every picture contains either no visible baseboard , a single

straight baseboard , or two baseboards meeting at right angles, enable us

to incorporate in an algorithm much of the prior information that a human

might use. Indeed , most human observers were not significantly better at

choosing straight-line fits to the tracking data than was the line-fitting

program. The key difference , of course , is that a human analyzing a pic-
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ture to locate the walls does not restrict his attention solely to the

baseboard. He makes use of many other clues as well. One of the
weaknesses of the programs described is that they do not interact with

each other in any important way. The baseboard tracker , for example

should provide informat ion to the obj ect recognizer to help it extract

a figure from the background. The trend in scene analysis , we suspect

will be toward this sort of consolidation--toward programs that in-

corporate more comprehensive knowledge of the visual environment , and

tha t use thi s knowledge more extensi vel y in their operation.
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